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LETTER TO THE EDITOR 

The coherence and dynamics of polarons in the presence of 
disorder 

M Spiccit, M I Salkola and A R Bishop 
Theoretical Division, Los Alamos National Laboratory, Los Alamos. NM 87545, USA 

Received 10 April 1994 

Abstract. The effects of disorder on polaron dynamics and sfability are shldied by considering 
a conelated electron-phonon model on a three-site cluster. Using both analytical and numerical 
techniques, it is demonstrated how disorder affects the p ~ c l e - l i k e  motion of the polaron and 
ultimately bmaks down its coherent structure. 

Strongly correlated electron-phonon systems constitute complex many-degrees-of-freedom 
systems where non-linearity and non-adiabaticity characterize distinctive, particularly 
polaronic, aspects of collective behaviour. In many physically interesting systems, a further 
complication is caused by disorder which combines with non-linearity, often in a competing 
fashion [l]. Thus, polarons represent a coherent particle-like motion of correlated electronic 
and lattice distortions, whereas disorder tends to produce localized wave-functions on quite 
different spatial and temporal scales-either for polaronic or for single-electron states. 

In this letter, we focus on the important issue of disorder and how it interacts with 
polaron formation and dynamics, which has been little studied except by approximate 
scaling theories at mean-field level [2]. In particular, the question of when the polaron 
ceases to be a composite particle (of an electron and phonons) due to disorder is a centra! 
concern and is studied below within a specific cluster model. Moreover, since we consider 
a small (three-site) cluster, an exact diagonalization analysis can be made numerically exact. 
Thus non-linear and non-adiabatic dynamics is described precisely. We note that spatially 
extended systems are of course of interest, but there analytical approaches are usually limited 
to adiabatic and mean-field approximations [3] and numerical works rely on either quantum 
Monte Carlo [4] or variational [5] methods. 

Below, we introduce specific measures of polaron coherence to establish our main result: 
the effects of disorder (both diagonal and off-diagonal) on polarons can be understood in 
terms of two important energy scales, and w, where CT is the polaron-tunnelling energy 
(i.e. the polaron bandwidth in our small cluster) and w is the bare electron bandsridth for the 
lowest-energy 'band' (i.e. in the absence of electron-phonon interactions). The tunnelling 
energy specifies the typical energy scale of disorder at which the coherent motion of polarons 
is suppressed and they are localized as composite particles. The bandwidth w, on the other 
hand, gives the energy scale at which the polaron ceases to be a composite particle of an 
electron and phonons; i.e. the dressing of the electron with phonons strongly decreases. 

As a prototype of polaronic behaviour, we consider a three-site model [6] with two 
phonon modes, also known as a molecular-crystal Hamiltonian. It can be written in the 
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form 

H = &I + &I-ph + Hph 

where 

Hel -pb=hs(as+a?)@1 - P Z + P ~ )  +h.(a.+a:)(p~ -PI) (2b) 

(ZC) H~,, = hw,a!a, + ho,aJa,. 

t t Here, cno creates an electron of spin U at site n, pno = c,,~,,,, and pn = E, pnC. The 
notation (nn') refers to the bonds and tn., is the hopping matrix element between sites n and 
n'. An on-site electron-electron interaction of strength U is included for generality. The 
isolated three-site cluster has two phonon modes for displacements along the cluster axis that 
do not change the centre of mass. These bare modes are assumed to be harmonic with well 
defined parity. Usually, the symmetric and the antisymmetric phonon modes are referred 
to as Raman and infrared active. These modes are described by boson operators a, and a, 
with bare frequencies w, and ma, where s (a) denotes the symmetric (antisymmetric) mode, 
respectively. The corresponding linear electron-phonon coupling constants are h, and h, 
(2 0). The above model has been used elsewhere [6] to explain some of the novel structural 
and optical features of the axial oxygen (O(4)) and the chain copper (Cu(1)) cluster- 
arranged as 0(4)-Cu(l)4(4) and located between CuOz planes in the high-temperature 
superconductor YBazCu307. There n = 1,3 denote the axial O(4) sites and n = 2 is the 
chain Cu(1) site. 

Despite the above model's apparent simplicity, it can describe a wide variety of 
interesting phenomena, ranging from polaron formation and tunnelling to multi-polaron 
interactions. Rather than considering all these aspects, we focus here on a polaron- tunnelling 
regime [6]. In this regime for sufficiently large values of h,, the model dynamically 
generates a new length scale associated with a double-well structure in the antisymmetric 
phonon mode coordinate, ua = a,+a!. The motion of the lattice is strongly correlated with 
the electron motion, corresponding to polaron formation, and a new timescale describing 
polaron tunnelling is generated. Furthermore, as the system's parameters move from the 
weak-coupling to the strong-coupling regime, the energies of the symmetric states show 
pronounced minima in the intermediate-coupling regime (onset of polaron tunnelling), 
whereas the energies of the antisymmehic states decrease in a regular fashion with increasing 
values of A, [6]. 

To model disorder, we assume that the system has two electrons with opposite 
spins (S, = 0) on a linear cluster, which is parametrized so that t i3  = 0, f12 = f, 
tu = f + 6, ~ 1 , 3  = EO k A/2, and 62 = 0. We also consider the parameter regime where 
0 < t << E O ,  U - EO. Large, positive values of the on-site electron-electron interaction, U, 
and large positive average energies of sites 1 and 3, given by eo, inhibit bipolaron formation 
at low energies and the low-energy physics is characterized by polarons. The symetry- 
breaking fields A and 6 describe the disorder4iagonal and off-diagonal, respectively. 
These, as well as other parameters, are varied so that the salient disorder-induced features 
can be studied transparently. Thus, we first set I ,  to zero because the symmetric mode 
plays only a minor role in the polaron physics below. 

While the electronic part of the Hamiltonian (Zn) can be readily diagonalized 
numerically, it is already too complicated to be solved analytically for two electrons 
in the general case. However. an effective Hamiltonian can be derived easily when 
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0 < f, A,  6 << €0, U - EO, allowing a straightforward physical interpretation. In this 
parameter regime, the hopping term is a small perturbation which can be eliminated by 
a unitary transformation: A = ecSHeS. By elimination to second order in t/eo and 
t / ( U  -EO), we anive at the electronic part of the effective Hamiltonian: 

where the effective site energies and hopping matrix elements are defined as 

and E = 4 - n. The new fermion operators are do+ = (c.? rt c n l ) / f i .  The electronic 
part is thus reduced to a two-site problem with one 'd particle' in the Fock space of the 
effective Hamiltonian. Similarly, we can construct the effective electron-phonon interaction. 
For A. = 0, this becomes 

It is now straightforward to understand how the polaron is affected by weak disorder 
(0 < A ,  6 << €0,  U - GO): (i) For diagonal disorder (6 = O), the phonon coordinate ua 
acquires a negative expectation value, meaning that the polaron begins to localize around 
site 3; (ii) for off-diagonal disorder (A = 0), the on-site interaction has a critical value U,, 
which separates the behaviour into two distinct regimes-if U c U,, the polaron tends to 
localize around site 3; however, if U > U,, the polaron localizes first around site 1 and 
then, for sufficiently large values of 6 (> &), it localizes around site 3. The reason for this 
behaviour for very large values of U and for 6 # 0 is that it is energetically more favourable 
for an electron to be at site 1 because of virtual hopping processes between the 2 and 3, 
which are not affected by the strong electron-electron interaction. Equation (4a) allows us 
to evaluate uC as U,/S = 2 + 8. 

The above analysis is sufficient to describe polaron localization in the presence of weak 
disorder; it cannot be used to explain how disorder affects the internal stability (coherence) 
of the polaron. For this, we rely on numerical analysis, namely exact diagonalization of 
the Hamiltonian, ( I )  and (2). For these calculations, we choose representatively E O / $  = 4, 
hw,/t = 0.08, A, = 0, and vary the remainder of the parameters. 

We begin with diagonal disorder which is conceptually easier to understand. To monitor 
the stability and localization of the polaron, we consider two diagnostic quantities. 

Firsr we measure the correlation between the electrons and the phonon coordinate in 
the ground state. Defining deviations of the operators as 6 0  = 0 - (0) and denoting 
p13 = pt - m, we introduce the correlation factor 

Although the expectation values may be taken relative to any state, we consider here only the 
ground-state expectation values which will describe the polaronic state. The closer R is to 
unity, the more correlated are the electron and phonon dynamics, implying strong polaronic 
binding of the electron to its phonon cloud. In contrast, R = 0 signals non-polaronic 
behaviour, where the motions of electrons and phonons are completely decoupled. 
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Second, we consider the dressing of electrons by phonons in terms of the overlap factors 
between the ground states of the system in the absence and in the presence of the electron- 
phonon interaction. For the ground states, the polaronic dressing of electrons is conveniently 
defined by the overlap factor 

Z = IN'o(ha = 0, A)lVo&, A))Iz (7) 
where IW0(ha, A)) is the ground state of the system for the parameters shown. Z = I 
signifies no phonon dressing, and decreasing 2 implies increasing dressing. 

"." 
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Disorder 6 / t  
Figure 1. (a) The correlation factor U and (b) lhe gmund-state overlap factor Z as functions of 
the diagonal disorder parameter A for (111 = 16 and for the electron-phonon coupling constant 
hati  = 0.10, 0.15, 0.18, and 0.20. In the absence of diswder, the cwresponding tunnelling 
energies cT/t are 5 3 ~ 1 0 - ~ ,  1 . 5 ~ 1 0 ~ ~ .  I . Z X ~ O - ~ ,  and l,lx104, respectively. The double- 
headed m o w  marks the energy s d c  w (see text). 

Our results for diagonal disorder are summarized in figure 1, which shows R and 2 as 
functions of the disorder strength A for U l t  = 16 and for various values of the electron- 
phonon coupling constant ha. Both Rand  Z exhibit a crossover behaviour at a larger value 
of A and another one for a smaller value when h, is large enough that the system is in the 
polaron-tunnelling regime. These results can be understood in terms of two characteristic 
energy scales: the polaron-tunnelling energy, ET, and w, the energy-splitting of the lowest- 
energy spin-singlet states (with opposite parity), which plays the role of the lowest-energy 
bare electron bandwidth in our finite cluster. For U l t  = 16 and in the absence of disorder, 
w l t  = 0.72. As the symmetry-breaking disorder field A is increased, the first crossover at 
A N ET describes the localization of the polaron to essentially one site. As A is increased 
further so that A - w, R decreases sharply to a small value and 2 approaches unity. This 
signals the breaking of the composite character of the polaron, so that the electron is no 
longer coherently dressed by phonons. 

Next, we consider off-diagonal disorder whose influence is illustrated in figure 2. Again, 
R and 2 are plotted as functions of the disorder strength 8 for U / t  = 16 and for various 
values of the electron-phonon coupling constant ha. As for diagonal disorder, both quantities 
show two crossovers: one for disorder-induced localization and one for polaron breakdown. 
Note that the chosen value of U is less than the critical U, for the localization transition 
defined above. If we choose instead U > U,, we find intriguing behaviour for R, namely 



Lener zo the Editor L365 

% lo" 

.A 8 
c, 
d - 

io-= 

io-' 
Q 1.0 

0 

a 
d 
5 0.5 
> 
0 

0.0 
io-' io-' io-* IO-' io" 1d id 

Disorder 6 / t  
Fwre 2. (a) "he correlation factor 'R and (b) the ground-stak overlap fador Z as a tunction 
of the off-diagonal disorder parameter S for U / t  = 16 and for the electron-phonon coupling 
constant A.[r = 0.10, 0.15, 0.18 and 0.20, 
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Disorder 6/t  
Figure 3. The correlation factor %! as a function o f  the &diagonal disorder parameter 6 for 
h e  elecmn-phonon mupling constant i . / t  = 0.20 and U/[ = 16, 32. 64, and 128. 

a sharp peak at a,, where the localization transition occurs; see figure 3. This peak signals 
the delocalization of the polaron, as can be verified by noting that the polaron-tunnelling 
energy has a minimum at that particular value of 6, and (PI) = (p3)  for the ground state. 
Note that, as seen from (4a), 6 is not directly equal to the characteristic energy scale of 
offdiagonal disorder, as A is in the case of diagonal disorder (above). 

Finally, we assess the above approximation of neglecting the symmehic phonon 
mode, which was made for numerical convenience. Although it is intuitively clear that 
the symmetric phonons do not qualitatively affect our conclusions, it is still important 
from a physical point of view to determine whether they are involved in dressing the 
electrons, and whether they show any correlation with the polaron formation through 
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the antisymmetric phonons. We consider the correlation factor R' between the 'polaron 

of disorder and as a function of Aa for A, # 0, R' shows a clear maximum at intermediate 
values of A= for which the polaron, and thus the dynamic double well, begins to form. In 
this strongly non-linear regime with large-amplitude fluctuations, us thus has a highly non- 
trivial behaviour even though it is not directly involved in the polaron formation. Further, 
this behaviour has physically observable implications. for example, in dynamic structure 
factors, such as those measured in neutron scattering [7]. Also, we found that 'R' decreases 
to zero as A. + 0 or A, + W. 

In conclusion, we have studied the interplay of polaron dynamics, coherence, and 
disorder which are widely important issues, applying also to magnon-phonon or exciton- 
phonon systems [SI. By considering the effects of disorder in a polaron-tunnelling regime 
for our three-site cluster, we have identified two crossover transitions. The first one, at 
small strengths of symmetry-breaking disorder fields, distinguishes a particle-like motion 
of polarons from localized polarons, and the second one, at larger strengths, distinguishes 
polarons as composite entities from uncorrelated electrons and phonons. Diagonal and off- 
diagonal disorder both lead to crossover behaviours although they have different effects: 
diagonal disorder can be understood as tending to make the electron immobile (by increasing 
its effective mass). whereas off-diagonal disorder can be viewed as decreasing the electron's 
effective mass by increasing its hopping rate. Both types of disorder cause the electronic 
and phonon time scales to be so different that polaron formation is inhibited. 

We emphasize that the polaron study presented here is for a very small (three-site) 
cluster--clearly if the polaron formation and localization length scales involve more sites, a 
larger cluster is needed to resolve the competitions between disorder and polaron dynamics. 
In particular, for an infinite system, the hierarchy (continuum) of energy and length scales 
may result in new functional forms for the crossover energies, associated with the binding 
energies and the correlation lengths of polarons. Finally, we note that experimentally 
relevant optical signatures of disorder effects on polaron dynamics have been described 
elsewhere [7]. 

It is our pleasure to acknowledge valuable discussions with J Mustre de Leon and S Trugman. 
This work was supported by the US Department of Energy. 

operator', Apol = pI3ua,  and the symmetric phonon coordinate, us =a, fa, .  t In the absence 
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